Jenis dan tipe alat pembakaran berdasarkan jenis bahan bakar dan fungsi alat pembakaran

SISTEM PEMBAKARAN DENGAN BAHAN BAKAR CAIR

A. Bensin
1. Sistem Bahan Bakar Sepeda Motor Sistem bahan bakar sepeda motor pada umumnya terdiri dari beberapa komponen antara lain yaitu : Tangki bensin , Saringan bensin, selang bensin dan karburator. Pada tangki bensin dilengkapi dengan pengukur tinggi bensin, untuk tipe ini pada karburator dilengkapi kran bensin . Apabila keran bensin dibuka maka secara alamiah bensin akan mengalir menuju ke karburator. Agar bensin yang masuk ke karburator bersih dari kotoran terlebih dahulu disaring oleh saringan bensin. Komponen-komponen sistem bahan bakar dapat dilihat seperti gambar dibawah ini. Gambar Komponen Sistem Bahan Bakar Sepeda Motor

2. Karburator
a. Prinsip kerja karburator
Karburator memproses bahan bakar cair menjadi partikel kecil dan dicampur dengan udara sehingga memudahkan penguapan. Prosesnya serupa dengan penyemburan ( spray). Pada gambar
dibawah ini diterangkan prinsip dari penyemburan. Sebagai akibat dari derasnya tiupan angin di (a), suatu kondisi vacum (tekanan dibawah atmosfir) terjadi di (b).
Perbedaan tekanan antara vacum dan atmosfir udara di (c) mengakibatkan semburan terjadi pada gasoline (b). Berdasarkan proses ini, maka semakin cepat aliran udara (a) mengakibatkan semakin besar vacum yang terjadi pada (b), dan semakin banyak gasoline yang disemprotkan / disemburkan.

b. Aturan Kerja Karburator.
Bahan bakar dan udara dibutuhkan motor bensin untuk berjalan. Bahan bakar berupa bensin dicampur dengan udara oleh karburator supaya mudah terbakar dan di alirkan keruang bakar. Dengan kata lain, karburator bekerja sesuai aturan sebagai Berikut :
► Volume campuran udara dan bahan bakar sesuai kebutuhan mesin.
► Menciptakan campuran udara dan bahan bakar sedemikian rupa tepat sesuai kecepatan mesin.
► Merubah bensin menjadi partikel-partikel bercampur dengan udara sehingga mudah disemburkan atau dikabutkan.

3. Campuran Bahan Bakar dan Udara
Saat langkah isap pada mesin, tekanan didalam silinder lebih rendah dari atmosfir, maka aliran udara tercipta yang mengalir melalui karburator kedalam saluran pemasukan kesilinder. Pada bagian dari aliran ini, ada bagian yang menyempit yang disebut dengan Venturi. Dengan adanya venturi tersebut maka aliran menjadi lebih deras dan menciptakan Kevacuman pada bagian venturi tersebut.

Pada titik tersebut dipasang saluran dimana bahan bakar disemprotkan. Bahan bakar masuk, terpancar membentuk partikel–partikel kecil dan disemburkan. Pada dasarnya karburator digunakan untuk membedakan langkah ini dalam beberapa tingkatan dalam mekanisme yang komplek. Partikel bahan bakar yang terbentuk pada proses ini mengalir melalui pipa pemasukan (intake pipe) dan sebelum sampai ke silinder telah berubah menjadi uap dan secara sempurna membentuk campuran bahan bakar dan udara. Biasanya, saat proses peralihan dari cairan bahan bakar menjadi partikel ( disemburkan ) katup gas terbuka secara penuh dan putaran mesin pada putaran tinggi, dengan aliran udara mencapai kecepatan maksimum, maka pada saat ini merupakan titik optimum kerja proses penyemburan.
Ketika katup gas tertutup berarti kecepatan mesin perlahan, aliran angin juga turun maka tidak seluruh bahan bakar berubah menjadi partikel dan partikel-partikel bahan bakar yang besar tertinggal, tidak tersemburkan, dengan demikian pada putaran rendah konsentrasi perbandingan udara dan bahan bakar menjadi jenuh.

4. Menentukan Jumlah Campuran Udara dan Bahan Bakar
Diantara periode waktu tertentu, beberapa kali pembakaran terjadi saat mesin berputar pada kecepatan rendah adalah sedikit dan bila putaran mesin tinggi maka akan banyak. Bila ditentukan sejumlah campuran udara dan bahan bakar dibutuhkan untuk terjadinya pembakaran suatu saat, ternyata bahwa pembakaran terjadi banyak sekali, berindikasi bahwa volume campuran udara dan bahan bakar juga tinggi. Konsekuensinya, dengan meningkatkan atau menurunkan jumlah campuran bahan bakar yang disalurkan oleh karburator ke mesin, kecepatan mesin akan naik dan turun dan kemampuan akan naik atau turun. Dalam kenyataannya, bila tuas gas diputar dan kabel ditarik sejauh gerakan kabel tersebut.

Kebanyakan udara pada karburator memungkinkan lebih banyak campuran bahan bakar dan udara mengalir masuk dan meningkatkan cepat putaran mesin. Sebaiknya dengan menutup tuas gas, tertutup juga katup gas dan menurunkan laju putaran mesin

B. Solar (diesel)
Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).
Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (lihat biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering. Bagaimana mesin diesel bekerja Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar diesel disuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection). Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan. Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen :

* Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
* Intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.

Mesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas “resistive grid” dalam “intake manifold” untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin.

Dalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Ini dapat mempengaruhi sistem bahan bakar dari tanki sampai nozzle, membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Cara umum yang dipakai adalah untuk memanaskan penyaring bahan bakar dan jalur bahan bakar secara elektronik.

Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu para putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat berkerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka bisa mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih mencapai tujuan ini melalui elektronik kontrol modul (ECM) atau elektronik kontrol unit (ECU) – yang merupakan “komputer” dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidrolik untuk mengatur kecepatan mesin.

Ada dua kelas mesin diesel: dua-stroke dan empat-stroke. banyak mesin diesel besar bertipe mesin dua tak. Mesin yang lebih kecil biasanya menggunakan tipe mesin empat tak.

Biasanya jumlah silinder dalam kelipatan dua, meskipun berapapun jumlah silinder dapat digunakan selama poros engkol dapat diseimbangkan untuk mencegah getaran yang berlebihan. Inline-6 paling banyak diproduksi dalam mesin tugas-medium ke tugas-berat, meskipun V8 dan straight-4 juga banyak diproduksi.

Mesin disel bekerja dengan kompresi udara yang cukup tinggi, sehingga pada mesin disel besar perlu ditambahkan sejumlah udara yang lebih banyak. Maka dugunakan Supercharger atau turbocharger pada intake manifold, dengan tujuan memenuhi kebutuhan udara kompresi
Keunggulan dan kelemahan dibanding dengan mesin busi-nyala
Untuk keluaran tenaga yang sama, ukuran mesin diesel lebih besar daripada mesin bensin karena konstruksi besar diperlukan supaya dapat bertahan dalam tekanan tinggi untuk pembakaran atau penyalaan. Dengan konstruksi yang besar tersebut penggemar modifikasi relatif mudah dan murah untuk meningkatkan tenaga dengan penambahan turbocharger tanpa terlalu memikirkan ketahanan komponen terhadap takanan yang tinggi. Mesin bensin perlu perhitungan yang lebih cermat untuk modifikasi peningkatan tenaga karena pada umumnya komponen di dalamnya tidak mampu menahan tekanan tinggi, dan menjadikan mesin diesel kandidat untuk modifikasi mesin dengan biaya murah.

Penambahan turbocharger atau supercharger ke mesin bertujuan meningkatkan jumlah udara yang masuk dalam ruang bakar dengan demikian pada saat kompresi akan menghasilkan tekanan yang tinggi dan pada saat penyalaan atau pembakaran akan menghasilkan tenaga yang besar. Penambahan turbocharger atau supercharger pada mesin diesel tidak berpengaruh besar terhadap pemakaian bahan bakar karena bahan bakar disuntikan secara langsung ke ruang bakar pada saat ruang bakar dalam keadaan kompresi tertinggi untuk memicu penyalaan agar terjadi proses pembakaran. Sedangkan penambahan turbocharger atau supercharger pada mesin bensin sangat mempengaruhi pemakaian bahan bakar karena udara dan bahan bakar dicampur dengan komposisi yang tepat sebelum masuk ruang bakar, baik untuk mesin bensin dengan sistem karburator maupun sistem injeksi.

SISTEM PEMBAKARAN DENGAN BAHAN BAKAR PADAT
Pembakaran Batubara pada PLTU
Pada dasarnya metode pembakaran pada PLTU terbagi 3, yaitu pembakaran lapisan tetap (fixed bed combustion), pembakaran batubara serbuk (pulverized coal combustion /PCC), dan pembakaran lapisan mengambang (fluidized bed combustion / FBC). Gambar 3 di bawah ini menampilkan jenis – jenis boiler yang digunakan untuk masing – masing metode pembakaran.

Pembakaran Lapisan Tetap
Metode lapisan tetap menggunakan stoker boiler untuk proses pembakarannya. Sebagai bahan bakarnya adalah batubara dengan kadar abu yang tidak terlalu rendah dan berukuran maksimum sekitar 30mm. Selain itu, karena adanya pembatasan sebaran ukuran butiran batubara yang digunakan, maka perlu dilakukan pengurangan jumlah fine coal yang ikut tercampur ke dalam batubara tersebut. Alasan tidak digunakannya batubara dengan kadar abu yang terlalu rendah adalah karena pada metode pembakaran ini, batubara dibakar di atas lapisan abu tebal yang terbentuk di atas kisi api (traveling fire grate) pada stoker boiler. Bila kadar abunya sangat sedikit, lapisan abu tidak akan terbentuk di atas kisi tersebut sehingga pembakaran akan langsung terjadi pada kisi, yang dapat menyebabkan kerusakan yang parah pada bagian tersebut. Oleh karena itu, kadar abu batubara yang disukai untuk tipe boiler ini adalah sekitar 10 – 15%. Adapun tebal minimum lapisan abu yang diperlukan untuk pembakaran adalah 5cm.
Pada pembakaran dengan stoker ini, abu hasil pembakaran berupa fly ash jumlahnya sedikit, hanya sekitar 30% dari keseluruhan. Kemudian dengan upaya seperti pembakaran NOx dua tingkat, kadar NOx dapat diturunkan hingga sekitar 250 – 300 ppm. Sedangkan untuk menurunkan SOx, masih diperlukan tambahan fasilitas berupa alat desulfurisasi gas buang.
Pembakaran Batubara Serbuk (Pulverized Coal Combustion/PCC)
Saat ini, kebanyakan PLTU terutama yang berkapasitas besar masih menggunakan metode PCC pada pembakaran bahan bakarnya. Hal ini karena sistem PCC merupakan teknologi yang sudah terbukti dan memiliki tingkat kehandalan yang tinggi. Upaya perbaikan kinerja PLTU ini terutama dilakukan dengan meningkatkan suhu dan tekanan dari uap yang dihasilkan selama proses pembakaran. Perkembangannya dimulai dari sub critical steam, kemudian super critical steam, serta ultra super critical steam (USC). Sebagai contoh PLTU yang menggunakan teknologi USC adalah pembangkit no. 1 dan 2 milik J-Power di teluk Tachibana, Jepang, yang boilernya masing – masing berkapasitas 1050 MW buatan Babcock Hitachi. Tekanan uap yang dihasilkan adalah sebesar 25 MPa (254.93 kgf/cm2) dan suhunya mencapai 600℃/610℃ (1 stage reheat cycle). Perkembangan kondisi uap dan grafik peningkatan efisiensi pembangkitan pada PCC ditunjukkan pada gambar 4 di di bawah ini.
Pada PCC, batubara diremuk dulu dengan menggunakan coal pulverizer (coal mill) sampai berukuran 200 mesh (diameter 74μm), kemudian bersama – sama dengan udara pembakaran disemprotkan ke boiler untuk dibakar. Pembakaran metode ini sensitif terhadap kualitas batubara yang digunakan, terutama sifat ketergerusan (grindability), sifat slagging, sifat fauling, dan kadar air (moisture content). Batubara yang disukai untuk boiler PCC adalah yang memiliki sifat ketergerusan dengan HGI (Hardgrove Grindability Index) di atas 40 dan kadar air kurang dari 30%, serta rasio bahan bakar (fuel ratio) kurang dari 2. Pembakaran dengan metode PCC ini akan menghasilkan abu yang terdiri diri dari clinker ash sebanyak 15% dan sisanya berupa fly ash.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s